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Abstract—Given a degraded input image, image restoration aims to recover the missing high-quality image content. Numerous
applications demand effective image restoration, e.g., computational photography, surveillance, autonomous vehicles, and remote
sensing. Significant advances in image restoration have been made in recent years, dominated by convolutional neural networks
(CNNs). The widely-used CNN-based methods typically operate either on full-resolution or on progressively low-resolution
representations. In the former case, spatial details are preserved but the contextual information cannot be precisely encoded. In the
latter case, generated outputs are semantically reliable but spatially less accurate. This paper presents a new architecture with a
holistic goal of maintaining spatially-precise high-resolution representations through the entire network, and receiving complementary
contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing the
following key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange
across the multi-resolution streams, (c) non-local attention mechanism for capturing contextual information, and (d) attention based
multi-scale feature aggregation. Our approach learns an enriched set of features that combines contextual information from multiple
scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on six real image benchmark
datasets demonstrate that our method, named as MIRNet-v2 , achieves state-of-the-art results for a variety of image processing tasks,
including defocus deblurring, image denoising, super-resolution, and image enhancement. The source code and pre-trained models
are available at https://github.com/swz30/MIRNetv2.

Index Terms—Multi-scale Feature Representation, Dual-pixel Defocus Deblurring, Image Denoising, Super-resolution, Low-light
Image Enhancement, and Contrast Enhancement
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1 INTRODUCTION

OWing to the physical limitations of cameras or due to
complicated lighting conditions, image degradations

of varying severity are often introduced as part of image
acquisition. For instance, smartphone cameras come with a
narrow aperture and have small sensors with limited dy-
namic range. Consequently, they frequently generate noisy
and low-contrast images. Similarly, images captured under
the unsuitable lighting are either too dark or too bright.
Image restoration aims to recover the original clean image
from its corrupted measurements. It is an ill-posed inverse
problem, due to the existence of many possible solutions.

Recent advances in image restoration and enhancement
have been led by deep learning models, as they can learn
strong (generalizable) priors from large-scale datasets. Ex-
isting CNNs typically follow one of the two architecture
designs: 1) an encoder-decoder, or 2) high-resolution (single-
scale) feature processing. The encoder-decoder models [1],
[2], [3], [4] first progressively map the input to a low-
resolution representation, and then apply a gradual reverse
mapping to the original resolution. Although these ap-
proaches learn a broad context by spatial-resolution reduc-
tion, on the downside, the fine spatial details are lost, mak-
ing it extremely hard to recover them in the later stages. On
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the other hand, the high-resolution (single-scale) networks
[5], [6], [7], [8] do not employ any downsampling operation,
and thereby recover better spatial details. However, these
networks have limited receptive field and are less effective
in encoding contextual information.

Image restoration is a position-sensitive procedure,
where pixel-to-pixel correspondence from the input image
to the output image is needed. Therefore, it is important to
remove only the undesired degraded image content, while
carefully preserving the desired fine spatial details (such as
true edges and texture). Such functionality for segregating
the degraded content from the true signal can be better
incorporated into CNNs with the help of large context,
e.g., by enlarging the receptive field. Towards this goal, we
develop a new multi-scale approach that maintains the orig-
inal high-resolution features along the network hierarchy,
thus minimizing the loss of precise spatial details. Simul-
taneously, our model encodes multi-scale context by using
parallel convolution streams that process features at lower
spatial resolutions. The multi-resolution parallel branches
operate in a manner that is complementary to the main high-
resolution branch, thereby providing us more precise and
contextually enriched feature representations.

One main distinction between our method and the
existing multi-scale image processing approaches is how
we aggregate contextual information. The existing methods
[11], [12], [13] process each scale in isolation. In contrast, we
progressively exchange and fuse information from coarse-to-
fine resolution-levels. Furthermore, different from existing
methods that employ a simple concatenation or averaging
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TABLE 1: Comparison between MIRNet-v2 and MIRNet [9] under the same experimental settings for image denoising
task on the SIDD benchmark dataset [10]. FLOPs and inference times are computed on an image of size 256×256. When
compared to MIRNet [9], MIRNet-v2 is more accurate, while being significantly lighter and faster.

PSNR Params (M) FLOPs (B) Convs Activations (M) Train Time (h) Inference Time (ms)

MIRNet [9] 39.72 31.79 785 635 1270 139 142
MIRNet-v2 (Ours) 39.84 5.9 (81% ↓) 140 (82% ↓) 406 (36% ↓) 390 (69% ↓) 63 (55% ↓) 39 (72% ↓)

of features coming from multi-resolution branches, we intro-
duce a new selective kernel fusion approach that dynamically
selects the useful set of kernels from each branch represen-
tations using a self-attention mechanism. More importantly,
the proposed fusion block combines features with varying
receptive fields, while preserving their distinctive comple-
mentary characteristics.

The main contributions of this work include:

• A novel feature extraction model that obtains a comple-
mentary set of features across multiple spatial scales,
while maintaining the original high-resolution features
to preserve precise spatial details (Sec. 3).

• A regularly repeated mechanism for information ex-
change, where the features from coarse-to-fine reso-
lution branches are progressively fused together for
improved representation learning (Sec. 3.1).

• A new approach to fuse multi-scale features using a
selective kernel network that dynamically combines
variable receptive fields and faithfully preserves the
original feature information at each spatial resolution
(Sec. 3.1.1).

A preliminary version of this work has been published
as a conference paper [9]. The MIRNet model [9] is expen-
sive in terms of size and speed. In this work, we make
several key modifications to MIRNet [9] that allow us to
significantly reduce the computational cost while enhanc-
ing model performance (see Table 1). Specifically, in the
proposed MIRNet-v2 , (a) We demonstrate feature fusion
only in the direction from low- to high-resolution streams
performs best, and the information flow from high- to low-
resolution branches can be removed to improve efficiency.
(b) We replace the dual attention unit with a new residual
contextual block (RCB). Furthermore, we introduce group
convolutions in RCB that are capable of learning unique
representations in each filter group, while being more re-
source efficient than standard convolutions. (c) We employ
progressive learning to improve training speed: the network
is trained on small image patches in the early epochs and on
gradually large patches in the later training epochs. (d) We
show the effectiveness of the proposed design on a new task
of dual-pixel defocus deblurring [14] alongside the other
image processing tasks of image denoising, super-resolution
and image enhancement. Our MIRNet-v2 achieves state-of-
the-results on all six datasets. Furthermore, we extensively
evaluate our approach on practical challenges, such as gen-
eralization ability across datasets (Sec. 4)

In Table 1, we compare MIRNet-v2 with MIRNet [9]
under the same training and inference settings. The results
show that MIRNet-v2 is more accurate (improving PSNR
from 39.72 dB to 39.84 dB), while reducing the number of
parameters and FLOPs by∼ 81%, convolutions by 36%, and

activations by 69%. Furthermore, the training and inference
speed is increased by 2.2× and 3.6×, respectively.

2 RELATED WORK

Rapidly growing image content necessitates the need to
develop effective image restoration and enhancement algo-
rithms. In this paper, we propose a new method capable of
performing dual-pixel defocus deblurring, image denoising,
super-resolution, and image enhancement. Unlike existing
works for these problems, our approach processes features
at the original resolution in order to preserve spatial details,
while effectively fuses contextual information from multiple
parallel branches. Next, we briefly describe the representa-
tive methods for each of the studied problems.

2.1 Dual-Pixel Defocus Deblurring
Images captured with wide camera aperture have shallow
depth of field (DoF), where the scene regions that lie outside
the DoF are out-of-focus. Given an image with defocus
blur, the goal of defocus deblurring is to generate an all-in-
focus image. Existing defocus deblurring approaches either
directly deblur images [14], [15], [16], [17], or first estimate
the defocus dispartiy map and then use it to guide the
deblurring procedure [18], [19], [20]. Modern cameras are
equipped with dual-pixel sensor that has two photodiodes
at each pixel location, thereby generating two sub-aperture
views. The phase difference between these views is useful in
measuring the amount of defocus blur at each scene point.
Recently, Abuolaim et al. [14] presented a dual-pixel deblur-
ring dataset (DPDD) and a new method based on encoder-
decoder design. In this paper our focus is also on deblurring
images directly using the dual-pixel data as in [14], [16].
Previous defocus deblurring works [14], [16] employ the
encoder-decoder that repeatedly uses the downsampling
operation, thus causing significant fine detail loss. Whereas
the architectural design of our approach enables preserva-
tion of desired textural details in the restored image.

2.2 Image Denoising
Classic denoising methods are mainly based on modifying
transform coefficients [21], [22] or averaging neighborhood
pixels [23], [24], [25]. Although the classical approaches
perform well, the self-similarity [26] based algorithms, e.g.,
NLM [27] and BM3D [28], demonstrate promising denoising
performance. Numerous patch-based schemes that exploit
redundancy (self-similarity) in images are later developed
[29], [30], [31], [32]. Recently, deep learning models [6],
[9], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44] make significant advances in image denoising, yielding
favorable results than those of the hand-crafted methods.
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Fig. 1: Framework of the proposed MIRNet-v2 that learns enriched feature representations for image restoration and
enhancement. MIRNet-v2 is based on a recursive residual design. In the core of MIRNet-v2 is the multi-scale residual block
(MRB) whose main branch is dedicated to maintaining spatially-precise high-resolution representations through the entire
network and the complimentary set of parallel branches provide better contextualized features.

2.3 Image Super-Resolution

Prior to the deep-learning era, numerous super-resolution
(SR) algorithms have been proposed based on the sampling
theory [45], [46], edge-guided interpolation [47], [48], natu-
ral image priors [49], [50], patch-exemplars [51], [52] and
sparse representations [53], [54]. Currently, deep-learning
techniques are being actively explored as they provide dra-
matically improved results over conventional algorithms.
The data-driven SR approaches differ according to their
architecture designs [55], [56], [57]. Early methods [5], [58]
take a low-resolution (LR) image as input and learn to di-
rectly generate its high-resolution (HR) version. In contrast
to directly producing a latent HR image, recent SR networks
[59], [60], [61], [62] employ the residual learning framework
[63] to learn the high-frequency image detail, which is later
added to the input LR image to produce the final result.
Other networks designed to perform SR include recursive
learning [64], [65], [66], progressive reconstruction [67], [68],
dense connections [7], [69], [70], attention mechanisms [71],
[72], [73], multi-branch learning [68], [74], [75], [76], and
generative adversarial networks (GANs) [70], [77], [78], [79].

2.4 Image Enhancement

Oftentimes, cameras generate images that lack vivid details
or contrast. A number of factors contribute to the low qual-
ity of images, including unsuitable lighting conditions and
physical limitations of camera devices. For image enhance-
ment, histogram equalization is the most commonly used
approach. However, it frequently produces under- or over-
enhanced images. Motivated by the Retinex theory [80],
several enhancement algorithms mimicking human vision
have been proposed in the literature [81], [82], [83], [84].

Recently, CNNs have been successfully applied to general,
as well as low-light, image enhancement problems [85].
Notable works employ Retinex-inspired networks [4], [86],
[87], [88], encoder-decoder networks [89], [90], [91], [92],
[93], and GANs [94], [95], [96].

3 PROPOSED METHOD

A schematic of the proposed MIRNet-v2 is shown in Fig. 1.
We first present an overview of the proposed MIRNet-
v2 for image restoration and enhancement. We then pro-
vide details of the multi-scale residual block, which is the
fundamental building block of our method, containing
several key elements: (a) parallel multi-resolution convo-
lution streams for extracting (fine-to-coarse) semantically-
richer and (coarse-to-fine) spatially-precise feature repre-
sentations, (b) information exchange across multi-resolution
streams, (c) attention-based aggregation of features arriving
from different streams, and (d) residual contextual blocks to
extract attention-based features.

Overall Pipeline. Given an image I ∈ RH×W×3, the pro-
posed model first applies a convolutional layer to extract
low-level features F0 ∈ RH×W×C . Next, the feature maps
F0 pass through N number of recursive residual groups
(RRGs), yielding deep features Fn ∈ RH×W×C . We note
that each RRG contains several multi-scale residual blocks,
which is described in Section 3.1. Next, we apply a convolu-
tion layer to deep features Fn and obtain a residual image
R ∈ RH×W×3. Finally, the restored image is obtained as
Î = I + R. We optimize the proposed network using the
Charbonnier loss [97]:

L(̂I, I∗) =
√
‖Î− I∗‖

2
+ ε2, (1)
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Fig. 2: Schematic for selective kernel feature fusion (SKFF). It operates on features from different resolution streams, and
performs aggregation based on self-attention.

where I∗ denotes the ground-truth image, and ε is a con-
stant which we empirically set to 10−3 for all the experi-
ments.

3.1 Multi-Scale Residual Block

To encode context, existing CNNs [1], [98], [99], [100], [101],
[102] typically employ the following architecture design: (a)
the receptive field of neurons is fixed in each layer/stage,
(b) the spatial size of feature maps is gradually reduced
to generate a semantically strong low-resolution represen-
tation, and (c) a high-resolution representation is gradually
recovered from the low-resolution representation. However,
it is well-understood in vision science that in the primate
visual cortex, the sizes of the local receptive fields of neu-
rons in the same region are different [103], [104], [105],
[106]. Therefore, a similar mechanism of collecting multi-
scale spatial information in the same layer is more effective
when incorporated with in CNNs [107], [108], [109], [110].
Motivated by this, we propose the multi-scale residual block
(MRB), as shown in Fig. 1. It is capable of generating
a spatially-precise output by maintaining high-resolution
representations, while receiving rich contextual information
from low-resolutions. The MRB consists of multiple (three in
this paper) fully-convolutional streams connected in parallel
that operate on varying resolution feature maps (ranging
from low to high). It allows contextualized-information
transfer from the low-resolution streams to consolidate the
high-resolution features. Next, we describe the individual
components of MRB.

3.1.1 Selective Kernel Feature Fusion

One fundamental property of neurons present in the visual
cortex is their ability to change receptive fields according to
the stimulus [111]. This mechanism of adaptively adjusting
receptive fields can be incorporated in CNNs by using
multi-scale feature generation (in the same layer) followed
by feature aggregation and selection. The most commonly
used approaches for feature aggregation include simple
concatenation or summation. However, these choices pro-
vide limited expressive power to the network, as reported
in [111]. In MRB, we introduce a nonlinear procedure for
fusing features coming from different resolution streams
using a self-attention mechanism. Motivated by [111], we
call it selective kernel feature fusion (SKFF).

The SKFF module performs dynamic adjustment of
receptive fields via two operations – Fuse and Select, as

illustrated in Fig. 2. The fuse operator generates global fea-
ture descriptors by combining the information from multi-
resolution streams. The select operator uses these descrip-
tors to recalibrate the feature maps (of different streams)
followed by their aggregation. Next, we provide details
of both operators. (1) Fuse: SKFF receives inputs from
two parallel convolution streams carrying different scales
of information. We first combine these multi-scale features
using an element-wise sum as: L = L1 + L2. We then apply
global average pooling (GAP) across the spatial dimen-
sion of L ∈ RH×W×C to compute channel-wise statistics
s ∈ R1×1×C . Next, we apply a channel-downscaling con-
volution layer to generate a compact feature representa-
tion z ∈ R1×1×r , where r = C

8 for all our experiments.
Finally, the feature vector z passes through two parallel
channel-upscaling convolution layers (one for each resolu-
tion stream) and provides us with two feature descriptors
v1 and v2, each with dimensions 1× 1×C . (2) Select: This
operator applies the softmax function to v1 and v2, yielding
attention activations s1 and s2 that we use to adaptively
recalibrate multi-scale feature maps L1 and L2, respectively.
The overall process of feature recalibration and aggregation
is defined as: U = s1 · L1 + s2 · L2. Note that the SKFF uses
∼5x fewer parameters than aggregation with concatenation
but generates more favorable results (an ablation study is
provided in the experiments section).

3.1.2 Residual Contextual Block

While the SKFF block fuses information across multi-
resolution branches, we also need a distillation mechanism
to extract useful information from within a feature tensor.
Motivated by the advances of recent low-level vision meth-
ods [33], [71], [72], [73] which incorporate attention mech-
anisms [112], [113], [114], [115], we propose the residual
contextual block (RCB) to extract features in the convolu-
tional streams. The schematic of RCB is shown in Fig. 3. The
RCB suppresses less useful features and only allows more
informative ones to pass further. The overall process of RCB
is summarized as:

FRCB = Fa +W (CM(Fb)), (2)

where Fb ∈ RH×W×C represents feature maps that are
obtained by applying two 3x3 group convolution layers
to the input features Fb ∈ RH×W×C at the beginning
of the RCB. These group convolutions are more resource
efficient than standard convolutions and capable of learning
unique representations in each filter group. W denotes the
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Fig. 3: Architecture of residual contextual block (RCB). In the first two group convolution layers, g represents the number of
groups. ⊗ denotes matrix multiplication.

last convolutional layer with filter size 1x1. CM stands
for contextual module that is realized in three parts. (1)
Context modeling: From the original feature maps Fb, we
first generate new features Fc ∈ R1×1×HW by applying
1x1 convolution followed by the reshaping and softmax
operations. Next we reshape Fb to R1×HW×C and perform
matrix multiplication with Fc to obtain the global feature
descriptor Fd ∈ R1×1×C . (2) Feature transform: To capture
the inter-channel dependencies we pass the descriptor Fd

through two 1x1 convolutions, resulting in new attention
features Fe ∈ R1×1×C . (3) Feature fusion: We employ
element-wise addition operation to aggregate contextual
features Fe to each position of the original features Fb.

3.2 Progressive Training Regime
When considering the image patch size for network train-
ing, there is a trade-off between the training speed and test-
time accuracy [116], [117]. On large patches, CNNs capture
fine image details to provide improved results, but they are
slower to train. Whereas, training on small image patches is
faster, but comes at the cost of accuracy drop. To strike the
right balance between the training speed and accuracy, we
propose a progressive learning method where the network
is trained on smaller image patches in the early epochs and
on gradually larger patches in the later training epochs. This
approach can also be understood as a curriculum learning
process where the network sequentially moves from learn-
ing a simpler task to a more complex one (where modeling
of fine details is required). The progressive learning strategy
on mixed-size image patches not only improves the training
speed but also enhances the model performance at test time
where the input images can be of different sizes (which is
common in image restoration problems).

4 EXPERIMENTS

In this section, we perform qualitative and quantitative
assessments of the results produced by our MIRNet-v2 and
compare it with the state-of-the-art methods. Next, we de-
scribe the datasets, and then provide the implementation
details. Finally, we report results for (a) dual-pixel defocus
deblurring, (b) image denoising, (c) image super-resolution
and (d) image enhancement, on six real image datasets.

4.1 Real Image Datasets
Dual-pixel defocus deblurring. DPDD [14] dataset con-
tains 500 indoor/outdoor scenes captured with a DSLR

camera. Each scene consists of two defocus blurred sub-
aperture views captured with a wide camera aperture, and
the corresponding all-in-focus ground truth image captured
with a narrow aperture. The DDPD dataset is divided into
350 images for training, 74 images for validation and 76
images for testing.

Image denoising. (1) DND [118] consists of 50 images cap-
tured with four consumer cameras. Since the images are of
very high-resolution, the dataset providers extract 20 crops
of size 512 × 512 from each image, yielding 1000 patches
in total. All these patches are used for testing (as DND
does not contain training or validation sets). The ground-
truth noise-free images are not released publicly, therefore
the image quality scores in terms of PSNR and SSIM can
only be obtained through an online server [119]. (2) SIDD
[10] is collected with smartphone cameras. Due to the small
sensor and high-resolution, the noise levels in smartphone
images are much higher than those of DSLRs. SIDD contains
320 image pairs for training and 1280 for validation.

Super-resolution. RealSR [120] contains real-world LR-HR
image pairs of the same scene captured by adjusting the
focal-length of the cameras. RealSR has both indoor and
outdoor images taken with two cameras. The number of
training image pairs for scale factors ×2, ×3 and ×4 are
183, 234 and 178, respectively. For each scale factor, 30 test
images are also provided in RealSR.

Image enhancement. (1) LoL [87] is created for low-light im-
age enhancement problem. It provides 485 images for train-
ing and 15 for testing. Each image pair in LoL consists of a
low-light input image and its corresponding well-exposed
reference image. (2) MIT-Adobe FiveK [121] contains 5000
images of various indoor and outdoor scenes captured with
DSLR cameras in different lighting conditions. The tonal at-
tributes of all images are manually adjusted by five different
trained photographers (labelled as experts A to E). Similar
to [122], [123], [124], we also consider the enhanced images
of expert C as the ground-truth. Moreover, the first 4500
images are used for training and the last 500 for testing.

4.2 Implementation Details
The proposed architecture is end-to-end trainable and re-
quires no pre-training of sub-modules. We train four dif-
ferent networks for four different restoration tasks. For the
dual-pixel defocus deblurring, we concatenate the left and
right sub-aperture images and feed them as input to the net-
work. The training parameters, common to all experiments,
are the following. We use 4 RRGs, each of which further
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TABLE 2: Dual-pixel Defocus Deblurring comparisons on the DPDD Dataset [14]. The test set of DPDD contains 37 indoor
scenes and 39 outdoor scenes. Best and second best scores are highlighted and underlined, respectively.

Indoor Scenes Outdoor Scenes Combined
Method PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

EBDB [18] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet [20] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB [19] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNet [14] 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223
RDPD [16] 28.10 0.843 0.027 0.210 22.82 0.704 0.053 0.298 25.39 0.772 0.040 0.255

MIRNet-v2 (Ours) 28.96 0.881 0.024 0.154 23.59 0.753 0.049 0.205 26.20 0.816 0.037 0.180

contains 2 MRBs. The MRB has 3 parallel streams with
channel dimensions of 80, 120, 180 at resolutions 1, 12 ,

1
4 ,

respectively. Each stream in MRB has 2 RCBs with shared
parameters. The models are trained with the Adam opti-
mizer (β1 = 0.9, and β2 = 0.999) for 3 × 105 iterations.
The initial learning rate is set to 2 × 10−4. We employ
the cosine annealing strategy [125] to steadily decrease the
learning rate from initial value to 10−6 during training. For
progressive training, we use the image patch sizes of 128,
144, 192, and 224. The batch size is set to 64 and, for data
augmentation, we perform horizontal and vertical flips.

4.3 Dual-Pixel Defocus Deblurring

We compare the performance of the proposed MIRNet-
v2 with the conventional defocus deblurring methods
(EBDB [18] and JNB [19]) as well as the learning-based
approaches (DMENet [20], DPDNet [14], and RDPD [16]).
Table 2 shows that our method achieves state-of-the-art
results for both the indoor and outdoor scene categories. In
particular, our MIRNet-v2 achieves 0.86 dB PSNR improve-
ment over the previous best method RDPD [16] on indoor
images and 0.77 dB on outdoor images. When both scene
categories are combined, our method shows performance
gains of 0.81 dB over RDPD [14] and 1.07 dB over the second
best method DPDNet [14].

In Fig. 4, we provide defocus-deblurred results produced
by different methods for both indoor and outdoor scenes.
It is noticeable that our method effectively removes the
spatially varying defocus blur and produces images that are
more sharper and visually faithful to the ground-truth than
those of the compared approaches.

4.4 Image Denoising

In this section, we demonstrate the effectiveness of the
proposed MIRNet-v2 for image denoising. We train our net-
work only on the training set of the SIDD [10] and directly
evaluate it on the test images of both SIDD and DND [118]
datasets. Quantitative comparisons in terms of PSNR and
SSIM metrics are summarized in Table 3. Our MIRNet-
v2 performs favourably against the data-driven, as well
as conventional, denoising algorithms. Specifically, when
compared to the recent best methods, our algorithm demon-
strates a performance gain of 0.32 dB over CycleISP [38] on
SIDD and 0.11 dB over DAGL [127] on DND. Furthermore,
it is worth noting that CycleISP [38] uses additional training
data, yet our method yields considerably better results.

TABLE 3: Denoising comparisons on SIDD [10] and
DND [118] datasets. ∗ indicates the methods that use addi-
tional training data. Whereas our MIRNet-v2 is only trained
on the SIDD images and directly tested on DND.

SIDD [10] DND [118]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DnCNN [6] 23.66 0.583 32.43 0.790
MLP [126] 24.71 0.641 34.23 0.833
BM3D [28] 25.65 0.685 34.51 0.851
CBDNet* [35] 30.78 0.801 38.06 0.942
DAGL [127] 38.94 0.953 39.77 0.956
RIDNet* [33] 38.71 0.951 39.26 0.953
AINDNet* [42] 38.95 0.952 39.37 0.951
VDN [41] 39.28 0.956 39.38 0.952
DeamNet* [128] 39.47 0.957 39.63 0.953
SADNet* [39] 39.46 0.957 39.59 0.952
DANet+* [40] 39.47 0.957 39.58 0.955
CycleISP* [38] 39.52 0.957 39.56 0.956

MIRNet-v2 (Ours) 39.84 0.959 39.86 0.955

Fig. 5 shows a visual comparisons of our results with
those of other competing algorithms. The MIRNet-v2 is
effective in removing real noise and produces perceptually-
pleasing and sharp images. Moreover, it is can maintain
the spatial smoothness of the homogeneous regions without
introducing artifacts. In contrast, most of the other methods
either yield over-smooth images and thus sacrifice structural
content and fine textural details, or produce images with
chroma artifacts and blotchy texture.

Generalization capability. The DND and SIDD datasets
are acquired with different sets of cameras having differ-
ent noise characteristics. Since the DND benchmark does
not provide training data, setting a new state-of-the-art on
DND with our SIDD trained network indicates the good
generalization capability of our approach.

4.5 Super-Resolution

We compare our MIRNet-v2 against the state-of-the-art SR
algorithms (VDSR [59], SRResNet [79], RCAN [71], LP-
KPN [120]) on the testing images of the RealSR [120] for
upscaling factors of ×2, ×3 and ×4. Note that all the
benchmarked algorithms are trained on the RealSR [120]
dataset for a fair comparison. In the experiments, we also
include bicubic interpolation [45], which is the most com-
monly used method for generating super-resolved images.
Here, we compute the PSNR and SSIM scores using the Y
channel (in YCbCr color space), as it is a common practice
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PSNR 20.76 dB 21.02 dB 21.37 dB
Reference Blurry EBDB [18] DMENet [20]

20.76 dB 20.96 dB 24.87 dB 24.14 dB 26.41 dB
Blurry Image JNB [19] DPDNet [14] RDPD [16] MIRNet-v2

PSNR 18.84 dB 18.64 dB 18.75 dB
Reference Blurry EBDB [18] DMENet [20]

18.84 dB 18.65 dB 20.01 dB 19.41 dB 20.69 dB
Blurry Image JNB [19] DPDNet [14] RDPD [16] MIRNet-v2

PSNR 27.19 dB 26.43 dB 27.44 dB
Reference Blurry EBDB [18] DMENet [20]

27.19 dB 26.82 dB 28.67 dB 29.01 dB 29.82 dB
Blurry Image JNB [19] DPDNet [14] RDPD [16] MIRNet-v2

Fig. 4: Visual comparisons for dual-pixel defocus deblurring on the DPDD dataset [14]. Compared to the other approaches,
our MIRNet-v2 more effectively removes blur while preserving the fine image details.

in the SR literature [55], [56], [71], [120]. The results in
Table 4 show that the bicubic interpolation provides the least
accurate results, thereby indicating its low suitability for
dealing with real images. Moreover, the same table shows
that the recent method LP-KPN [120] achieves marginal
improvement of only ∼ 0.04 dB over the previous best
method RCAN [71]. In contrast, our method significantly
advances state-of-the-art and consistently achieves better
image quality scores than other approaches for all three
scaling factors. Particularly, compared to LP-KPN [120], our
method leads to performance gains of 0.48 dB, 0.73 dB, and
0.24 dB for scaling factors ×2, ×3 and ×4, respectively. The
trend is similar for the SSIM metric as well.

Visual comparisons in Fig. 6 show that our MIRNet-
v2 can effectively recover content structures . In contrast,
VDSR [59], SRResNet [79] and RCAN [71] reproduce results
with noticeable artifacts. Furthermore, LP-KPN [120] is not
able to preserve structures (see near the right edge of the

TABLE 4: Super-resolution evaluation on the RealSR
dataset [120] . Compared to the state-of-the-art, our method
consistently yields significantly better image quality scores
for all three scaling factors.

Scale x2 x3 x4
Method PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 32.61 0.907 29.34 0.841 27.99 0.806
VDSR [59] 33.64 0.917 30.14 0.856 28.63 0.821
SRResNet [79] 33.69 0.919 30.18 0.859 28.67 0.824
RCAN [71] 33.87 0.922 30.40 0.862 28.88 0.826
LP-KPN [120] 33.90 0.927 30.42 0.868 28.92 0.834

MIRNet-v2 (Ours) 34.38 0.934 31.15 0.883 29.16 0.845

crop). Several more examples are provided in Fig. 7 to fur-
ther compare the image reproduction quality of our method
against the previous best method [120]. It can be seen that
LP-KPN [120] has a tendency to over-enhance the contrast
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PSNR 18.25 dB 35.57 dB 36.24 dB 36.70 dB 36.71 dB 36.74 dB 37.07 dB

PSNR 18.16 dB 29.83 dB 29.99 dB 30.48 dB 30.22 dB 30.76 dB 31.29 dB
Reference Noisy RIDNet [33] AINDNet [42] SADNet [39] CycleISP [38] DANet [40] MIRNet-v2

26.90 dB 30.91 dB 33.62 dB 33.89 dB 34.09 dB
Noisy BM3D [28] CBDNet [35] VDN [41] RIDNet [33]

26.90 dB 34.32 dB 34.36 dB 34.36 dB 34.52 dB 34.64 dB
Noisy Image CycleISP [38] AINDNet [42] DANet [40] SADNet [39] MIRNet-v2

Fig. 5: Image denoising comparisons. First two examples are from SIDD [10] and the last is from DND [118]. The proposed
MIRNet-v2 better preserves fine texture and structural patterns in the denoised images.

LR HR Bicubic SRResNet [79]

Image VDSR [59] RCAN [71] LP-KPN [120] MIRNet-v2 (Ours)

Fig. 6: Comparisons for ×4 super-resolution on the RealSR [120] dataset. The image produced by our MIRNet-v2 is more
faithful to the ground-truth than other competing methods (see lines near the right edge of the crops).

(cols. 1, 3, 4) and in turn causes loss of details near dark
and high-light areas. In contrast, the proposed MIRNet-
v2 successfully reconstructs structural patterns and edges
(col. 2) and produces images that are natural (cols. 1, 4) and
have better color reproduction (col. 5).

4.6 Image Enhancement

In this section, we demonstrate the effectiveness of our
algorithm by evaluating it for the image enhancement task.
We report PSNR/SSIM values of our method and several
other techniques in Table 5 and Table 6 for the LoL [87] and
MIT-Adobe FiveK [121] datasets, respectively. It can be seen
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HR

LP-KPN
[120]

MIRNet-v2
(Ours)

Fig. 7: Additional visual examples for ×4 super-resolution, comparing our MIRNet-v2 against the state-of-the-art
approach [120]. Note that all example crops are taken from different images.

TABLE 5: Low-light image enhancement evaluation on the LoL dataset [87]. The proposed method significantly advances
the state-of-the-art.

Method BIMEF CRM Dong LIME MF RRM SRIE Retinex-Net MSR NPE GLAD KinD KinD++ MIRNet-v2
[129] [130] [131] [132] [133] [134] [133] [87] [83] [135] [136] [4] [137] (Ours)

PSNR 13.86 17.20 16.72 16.76 18.79 13.88 11.86 16.77 13.17 16.97 19.72 20.87 21.30 24.74
SSIM 0.577 0.644 0.582 0.564 0.642 0.658 0.498 0.559 0.479 0.589 0.703 0.810 0.822 0.851

TABLE 6: Image enhancement comparisons on the MIT-Adobe FiveK dataset [121].

Method HDRNet [138] W-Box [122] DR [123] DPE [94] DeepUPE [124] MIRNet-v2 (Ours)

PSNR 21.96 18.57 20.97 22.15 23.04 23.97
SSIM 0.866 0.701 0.841 0.850 0.893 0.931

that our MIRNet-v2 achieves significant improvements over
previous approaches. Notably, when compared to the recent
best methods, MIRNet-v2 obtains 3.44 dB performance gain
over KinD++ [137] on the LoL dataset and 0.93 dB improve-
ment over DeepUPE1 [124] on the Adobe-Fivek dataset.

We show visual results in Fig. 8 and Fig. 9. Compared
to other techniques, our method generates enhanced images
that are natural and vivid in appearance and have better
global and local contrast.

4.7 Ablation Studies
We study the impact of each of our architectural components
and design choices on the final performance. All the ablation
experiments are performed for the super-resolution task
with ×3 scale factor. The ablation models are trained on
image patches of size 128×128 for 105 iterations. Table 7
shows that removing skip connections causes the largest
performance drop. Without skip connections, the network
finds it difficult to converge and yields high training errors,
and consequently low PSNR. Furthermore, the information
exchange among parallel convolution streams via SKFF is
helpful and leads to improved performance. Similarly, RCB
contributes positively towards the final image quality.

1. Note that the quantitative results reported in [124] are incorrect.
The correct scores are later released by the original authors [link].

Table 8 shows that the proposed RCB provides favor-
able performance gain over the baseline Resblock from
EDSR [74]. Moreover, removing the transform part from
RCB causes drop in accuracy. Table 8 also shows that re-
placing the group convolutions with regular convolutions in
RCB increases the PSNR score, but at the cost of significant
increase in parameters and FLOPs. Therefore, we opt for
RCB with group convolutions (g=2) as a balanced choice.

Next, we analyze the feature aggregation strategy in
Table 9. It shows that the proposed SKFF generates favorable
results compared to summation and concatenation. Note
that our proposed SKFF module uses ∼ 5× fewer param-
eters than concatenation. Table 10 shows that the progres-
sive learning strategy on mixed-size image patches yields
PSNR similar to the model trained on large image patches
(ps=224), but takes less time for training. Finally, in Table 11
we study how the number of convolutional streams and
columns (RCB blocks) of MRB affect the image restoration
quality. We note that increasing the number of streams
provides significant improvements, thereby justifying the
importance of multi-scale features processing. Moreover,
increasing the number of columns yields better scores, thus
indicating the significance of information exchange among
parallel streams for feature consolidation.

https://drive.google.com/file/d/1fJ7MQfm6NuCMtfQzLM0Y6LNU9XyQb6Ho/view
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Input image LIME [132] SRIE [133] Retinex-Net [87]

KinD [4] KinD++ [137] MIRNet-v2 (Ours) Ground-truth

Fig. 8: Visual comparison of low-light enhancement approaches on the LoL dataset [87]. The image produced by our
method is visually closer to the ground-truth in terms of brightness and global contrast.

TABLE 7: Impact of individual components of MRB.

Skip connections X X X X
RCB X X X
SKFF intermediate X X X
SKFF final X X X X X

PSNR (in dB) 28.21 30.79 30.85 30.68 30.97

TABLE 8: Effect of individual components of RCB. Resblock
from EDSR [74] is taken as baseline. FLOPs are calculated
on an image of size 256×256. ‘g’ represents the number of
groups in the group convolutions.

PSNR Params (M) FLOPs (B)

Baseline [74], g=2 30.84 5.0 139.5
+ RCB, g=2 30.97 5.9 139.8
RCB w/o transform, g=2 30.92 5.0 139.7
RCB, g=1 31.05 9.7 253.2

TABLE 9: Feature aggregation. Our SKFF uses ∼ 5× fewer
parameters than ‘Concat’, but generates better results.

Sum Concat SKFF

PSNR (in dB) 30.76 30.83 30.97
Parameters 0 8,192 1,536

TABLE 10: Effect of progressive learning. For progressive
training, we gradually increase image patch size from
128×128 to 224×224.

Patch size 128 144 192 224 Progressive

PSNR (in dB) 30.97 30.99 31.02 31.08 31.06
Train time (h) 14 17 25 33 22

5 CONCLUDING REMARKS

Conventional image restoration and enhancement pipelines
either stick to the full resolution features along the net-

TABLE 11: Ablation study on different layouts of MRB. Rows
denote the number of parallel resolution streams, and Cols
represent the number of columns containing RCBs.

PSNR Cols = 1 Cols = 2 Cols = 3

Rows = 1 30.01 30.29 30.47
Rows = 2 30.65 30.79 30.85
Rows = 3 30.73 30.97 31.03

work hierarchy or use an encoder-decoder architecture. The
first approach helps retain precise spatial details, while the
latter one provides better contextualized representations.
However, these methods can satisfy only one of the above
two requirements, although real-world image restoration
tasks demand a combination of both conditioned on the
given input sample. In this work, we propose a novel ar-
chitecture whose main branch is dedicated to full-resolution
processing and the complementary set of parallel branches
provides better contextualized features. We propose novel
mechanisms to learn relationships between features within
each branch as well as across multi-scale branches. Our
feature fusion strategy ensures that the receptive field can be
dynamically adapted without sacrificing the original feature
details. Consistent achievement of state-of-the-art results on
six datasets for four image restoration and enhancement
tasks corroborates the effectiveness of our approach.
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